



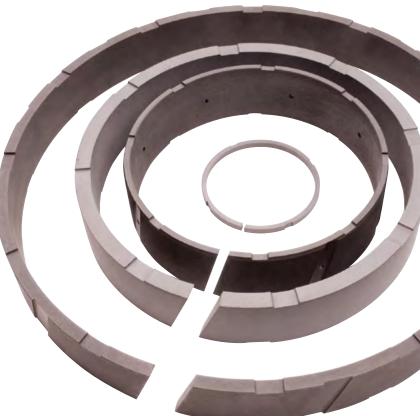
### TruTech<sup>™</sup> ENGINEERED THERMOPLASTICS AND FLUOROPOLYMERS





### **TABLE OF CONTENTS**

| SUPERIOR MATERIAL PERFORMANCE        |
|--------------------------------------|
| IN-HOUSE PROCESSING CAPABILITIES 4   |
| QUALITY ASSURANCE                    |
| MATERIALS DEVELOPMENT                |
| PTFE-BASED MATERIALS OVERVIEW        |
| PEEK-BASED MATERIALS OVERVIEW        |
| PPS AND POLYIMIDE MATERIALS OVERVIEW |
| MATERIAL DATA SHEETS                 |
| PTFE-Based Materials 10-30           |
| PEEK-Based Materials 31-42           |
| PPS and Polyimide Materials          |






### SUPERIOR MATERIAL PERFORMANCE

Incorporating the latest advances in polymer science, TruTech<sup>™</sup> materials from Cook Compression<sup>®</sup> provide superior durability and optimum performance characteristics for reciprocating compressor components, including packing rings, wiper rings, piston rings and rider rings.

The TruTech family includes custom PTFE, modified PTFE, UHMWPE, PEEK, PPS, polyimide and other high-temperature aromatic polymer materials. In-house precision blending capabilities enable Cook Compression to enhance specific material properties using reinforcements, fillers and additives such as glass fiber, carbon, carbon fiber, graphite, metal powders, FDA-approved minerals, and molybdenum disulphide (MoS<sub>2</sub>). Special formulations provide high-performance sealing and lasting reliability for even the most demanding non-lubricated, dry-gas and hightemperature applications.



#### **COMMON USES**

Custom-blended TruTech thermoplastics and fluoropolymers are used in a broad range of industrial applications and equipment. Common uses include:

- Bearings
- Bellows
- Bushings
- Gaskets
- Impellers
- Piston rings
- Rod rings
- Seals
- Sleeves
- Spacers
- Valve seats
- Wear rings
- Wiper rings



## **IN-HOUSE PROCESSING CAPABILITIES**

With complete in-house blending and processing capabilities, Cook Compression has the flexibility and expertise to deliver custom solutions tailored for maximum performance in your applications.

Compounding, compression molding, free sintering, injection molding and machining are all performed in-house and closely monitored to ensure the quality and consistency of finished products. Quality assurance procedures include full batch documentation and certificates of analysis.

We maintain an extensive inventory of tooling and can manufacture custom tooling to meet your requirements.

#### COLD COMPRESSION MOLDING AND FREE SINTERING

The free sintering process is primarily used with PTFE-based material formulations. Raw powder is mechanically blended in a controlled environment to produce a custom formulation. The blended powder is placed in a mold and subjected to a controlled pressure profile to produce a "green" pre-form. This pre-form is then placed in an oven where an engineered temperature profile is applied to consolidate the powder and optimize its bulk properties.

#### HOT COMPRESSION MOLDING

Hot compression molding is used for PEEK-based material formulations. As in the cold compression process, raw materials are mechanically blended in powder form and cold pressed in a mold. The mold is then transferred to an oven to be heated above the material melting point. Pressure is applied again to the melted material. Once the material is fully crystallized and consolidated under pressure, the part is removed from the mold and annealed to relieve internal stresses and maximize thermal and mechanical characteristics.

#### **INJECTION MOLDING**

Injection molding is primarily used with PEEK materials to form specified shapes. The material starts in the form of pellets, which are first dried, then melted. The melted material is injected at high pressure into a mold cavity to cool and harden. A holding pressure is applied to compensate for thermal shrinkage.

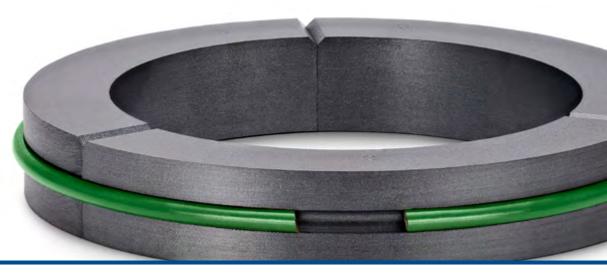


#### **OUR CAPABILITIES**

- PTFE, UHMWPE, PEEK, PPS and polyimide shapes
- Heavy cross-section molding
- Unfilled (virgin) and filled PTFE rod and tube
- Modified PTFE molding and welding
- Billets up to 8 in. (203 mm) length
- Solid rods up to 6 in. (152 mm) diameter
- Tubes up to 42 in. (1066 mm) outer diameter, with 2 in. (50 mm) wall thickness



## **QUALITY ASSURANCE**


Cook Compression has developed a comprehensive quality control program to ensure materials and finished components meet the highest standards.

Every batch of material is documented for full traceability of raw materials, blending, processing, and inspection. Information is available upon request in the form of a certificate of analysis.

In addition, each step of production follows documented procedures so the quality level is repeated for every batch. Our process standards control blending, pressing, sintering, and melting, as well as secondary operations.

Manufactured basic shapes are inspected visually and dimensionally at the end of the manufacturing process to ensure they meet customer specifications.







## MATERIALS DEVELOPMENT

The Dover Precision Components Materials Technology program integrates materials research with extensive engineering resources and more than a century of practical experience.

Our Materials Laboratory features state-of-the-art mechanical, chemical, optical and thermal analysis equipment, as well as advanced friction and wear testing, to help us develop next-generation polymeric materials, optimize process parameters and product quality, and perform failure analyses.

Our tools allow us to identify, differentiate and evaluate materials by their signature properties, such as:

- Filler ratios and composition
- Mechanical performance over a wide temperature and frequency range
- Coefficient of thermal expansion (CTE)
- Transition points (e.g., melting and glass transition temperatures)

New materials receive intensive laboratory analysis and undergo comprehensive testing before release to the field. The Materials Lab also ensures the ongoing quality and consistency of our raw materials.

### FROM RAW MATERIAL TO PROVEN PRODUCT

Broad in-house research and development capabilities enable us to control development from material composition through manufacturing process and product testing.

The Materials Lab includes prototyping equipment for the replication and evaluation of manufacturing procedures in the lab environment. After a multifaceted analysis of material properties and assessment on in-house reciprocating wear testers, materials can be tested at product scale in a test compressor at the Dover Precision Components Innovation Lab.





### **PTFE-BASED MATERIALS**

PTFE (polytetrafluoroethylene) materials are the most common type of material used in reciprocating compressor piston, rider and packing rings. Due to its unique molecular arrangement, PTFE has an extremely low coefficient of friction. Additionally, it is non-reactive with most common gases and liquids and has excellent chemical resistance. It can be continuously used at temperatures up to 250°C (490°F) and works well at extremely low (cryogenic) temperatures.

Reinforcing fillers, wear resistant additives and self-lubricating fillers are typically applied to enhance the properties of PTFE. Fillers are selected and combined to reduce wear and improve performance based on the specific operating environment.

Standard grade PTFE materials, using fillers such as glass fiber, MoS<sub>2</sub>, graphite or carbon, provide good friction, wear and mechanical properties in lubricated and low severity non-lubricated service.

For more challenging conditions – higher temperatures, higher pressures and/or harsh chemicals – Cook Compression typically specifies upgraded PTFE material variants.

Bone-dry non-lubricated service, problem gases and other niche applications use specialty PTFEs with premium fillers, propriety formulations and propriety processing methods.



#### MATERIAL LIST

#### **Standard PTFE Materials**

- P1110
- P1120
- P1130
- P1140
- P1150
- P1160
- P1170
- P1210
- P1220

#### **Upgrade PTFE Materials**

- P2210
- P2220
- P2410
- P2420
- P2430
- P2510

#### **Specialty PTFE Materials**

- P3200
- P3210
- P3300
- P3310
- P3320
- P3330



## **PEEK-BASED MATERIALS**

PEEK (polyetheretherketone) materials are the second most common type of material for piston, rider and packing rings and may also be specified for valve components in high-temperature environments. PEEK materials are generally stronger than PTFE materials.

PEEK, like PTFE, has broad resistance to most common chemicals in the oil & gas industry and is capable of running continuously at temperatures up to 250°C (490°F). While fillers are not always required with PEEK, they may be incorporated to enhance material performance for specific operating conditions. PTFE and other self-lubricants, such as graphite and MoS<sub>2</sub>, are typically used to reduce the relatively higher coefficient of friction of PEEK. Reinforcing and wear resistant fillers may also be introduced to further improve mechanical and wear properties.

Standard grade PEEK materials are suitable for most lubricated compressor service, while upgraded PEEK materials provide more lubricity and higher strength.

Specialty grade PEEK materials from Cook Compression use premium fillers and proprietary formulations to meet the requirements of difficult applications, including non-lubricated dry gas service.



#### MATERIAL LIST

#### **Standard PEEK Materials**

- K1000
- K1030
- K1050

#### **Upgrade PEEK Materials**

- K2310
- K2330
- K2340

#### Specialty PEEK Materials

- K3400
- K3410
- K3420
- K3430
- K3510
- K3520



## **PPS AND POLYIMIDE MATERIALS**

Cook Compression also produces specialty PPS (polyphenylene sulfide) and polyimide materials.

PPS mechanical and wear properties are similar to those of PEEK. PPS has broad chemical resistance and is capable of running continuously at temperatures up to 220°C (428°F). It is sometimes used as a filler to improve the wear performance of PTFE in piston, rider and packing rings.

Polyimides are typically reserved for extreme, high-temperature applications. Polyimides are resistant to most chemicals, except steam and ammonia, and exhibit excellent strength and wear resistance. PTFE and graphite are typically used as fillers to reduce the coefficient of friction.

#### MATERIAL LIST

- V3710
- V3720
- V3810
- V3820

#### VALVE MATERIALS

Depending on application requirements, Cook Compression uses filled and unfilled versions of PEEK, PPS and nylon for plastic valve components. Properties of the compressed gas, such as its chemistry, temperature and pressure, as well as application parameters of the compressor, such as its speed, determine the optimum material for each component.

Valve components are generally injection molded and then machined to tight tolerances.

#### TruTech<sup>™</sup> P1110



Cook Compression<sup>®</sup> developed TruTech P1110 material for the unique demands of oil wiper service. The innovative PTFE-based compound is engineered to provide a sharp wiping edge in wiper rings and retain that wiping edge over extended use. TruTech P1110 is also formulated to impart flexibility to wiper rings, allowing the material to tightly conform to the rod surface and eliminate potential leak paths.

TruTech P1110 delivers outstanding results in oil wiper packing and may be applied in any lubricated service where PTFE can be used. For some applications, TruTech P1110 may also be selected to enhance the performance of piston rings, rider rings, rod packing rings and bushings.

| Property         | Value                                            |    | ASTM Method |
|------------------|--------------------------------------------------|----|-------------|
| Tensile Strength | 2,700 psi 18.6 MPa                               |    | D1708       |
| Elongation       | 125%                                             |    | D1708       |
| CTE*             | 65×10 <sup>-6</sup> /°F 117×10 <sup>-6</sup> /°C |    | E831        |
| Hardness         | 65 Shore D                                       |    | D2240       |
| Specific Gravity | 2                                                | .0 | D792        |



#### TruTech<sup>™</sup> P1120

TruTech P1120 is a compression-molded, glass and molybdenum disulphide filled PTFE material that is resistant to most chemicals. Suitable for use in piston rings, rider rings and rod rings.

| Property         | Value                    |                          | ASTM Method |
|------------------|--------------------------|--------------------------|-------------|
| Tensile Strength | 2,000 psi 13.8 MPa       |                          | D638        |
| Elongation       | 280%                     |                          | D638        |
| CTE* – Radial    | 4.4×10⁻⁵/°F              | 8.0×10 <sup>-5</sup> /°C | E831-03     |
| CTE – Axial      | 8.9×10⁻⁵/°F              | 16.0×10⁻⁵/°C             | E831-03     |
| Density          | 0.082 lb/in <sup>3</sup> | 2.3 g/cm <sup>3</sup>    | D792        |

\* CTE – Coefficient of thermal expansion

www.cookcompression.com info-cook@doverprecision.com





#### TruTech<sup>™</sup> P1130

TruTech P1130 is a compression-molded, carbon and graphite filled PTFE material that is resistant to most chemicals. Suitable for use in piston rings, rider rings, rod rings and bushings.

| Property         | Va                       | ASTM Method           |      |
|------------------|--------------------------|-----------------------|------|
| Tensile Strength | 2,000 psi                | 2,000 psi 13.8 MPa    |      |
| Elongation       | 60                       | 60%                   |      |
| CTE* – Radial    | 4.9×10⁻⁵/°F              | 8.8×10⁻⁵/°C           | D696 |
| CTE – Axial      | 6.3×10⁻⁵/°F              | 11.3×10⁻⁵/°C          | D696 |
| Density          | 0.080 lb/in <sup>3</sup> | 2.2 g/cm <sup>3</sup> | D792 |



#### TruTech<sup>™</sup> P1140

TruTech P1140 is a PTFE-based material with a selection of fillers that assists in increasing performance in lubricated or non-lubricated dry gas applications. It is a good cost-effective solution for a wide range of non-lubricated applications.

| Property         | Value              |  | Method            |
|------------------|--------------------|--|-------------------|
| Tensile Strength | 2,320 psi 16.0 MPa |  | BS EN ISO 13000-2 |
| Elongation       | 100%               |  | BS EN ISO 13000-2 |
| Hardness         | 68-73 Shore D      |  | BS EN ISO 13000-2 |
| Specific Gravity | 2.10-2.14          |  | BS EN ISO 13000-2 |

\* CTE – Coefficient of thermal expansion

www.cookcompression.com info-cook@doverprecision.com



#### TruTech<sup>™</sup> P1150

TruTech P1150 is a compression-molded, carbon and graphite filled PTFE material that is resistant to most chemicals and exhibits one of the lowest CTE values in this category. Suitable for use in piston rings, rider rings, rod rings and bushings where enhanced wear resistance is critical.

| Property                             | Va                       | Value                  |      |
|--------------------------------------|--------------------------|------------------------|------|
| Tensile Strength                     | 2,200 psi                | 15.2 MPa               | D638 |
| Elongation                           | 40                       | 40%                    |      |
| CTE* – Radial<br>(up to 392°F/200°C) | 4.1×10⁻⁵/°F              | 7.4×10⁻⁵/°C            | D696 |
| CTE – Axial<br>(up to 392°F/200°C)   | 5.2×10⁻⁵/°F              | 9.3×10⁻⁵/°C            | D696 |
| Density                              | 0.073 lb/in <sup>3</sup> | 2.02 g/cm <sup>3</sup> | D792 |

**DOVER** PRECISION COMPONENTS





### TruTech<sup>™</sup> P1160

TruTech P1160 is a carbon and graphite filled PTFE material.

| Property                                                        | Value                                              |                        | ASTM Method |
|-----------------------------------------------------------------|----------------------------------------------------|------------------------|-------------|
| Tensile Strength                                                | 2,200 psi                                          | 15.2 MPa               | D4745       |
| Elongation                                                      |                                                    | 30%                    | D4745       |
| Hardness                                                        | 68/66 Shore D                                      |                        | D2240       |
| CTE*, stress-relieved<br>material, 78 to 500°F<br>(25 to 260°C) | MD <sup>†</sup> 3.4137%<br>CD <sup>‡</sup> 2.5467% |                        | E831-03     |
| Density                                                         | 0.072 lb/in <sup>3</sup>                           | 1.99 g/cm <sup>3</sup> | D792-00     |

\* CTE - Coefficient of thermal expansion

<sup>*†*</sup> MD – Properties measured parallel to the direction of molding;

<sup>*t*</sup> CD – Properties measured perpendicular to the direction of molding





### TruTech<sup>™</sup> P1170

TruTech P1170 is a glass fiber filled PTFE material.

| Property                                                        | Value                                              |                        | ASTM Method |
|-----------------------------------------------------------------|----------------------------------------------------|------------------------|-------------|
| Tensile Strength                                                | 3,000 psi                                          | 20.7 MPa               | D4745       |
| Elongation                                                      |                                                    | 250%                   | D4745       |
| Hardness                                                        | 63/59 Shore D                                      |                        | D2240       |
| CTE*, stress-relieved<br>material, 78 to 500°F<br>(25 to 260°C) | MD <sup>†</sup> 4.2280%<br>CD <sup>‡</sup> 2.9740% |                        | E831-03     |
| Density                                                         | 0.079 lb/in <sup>3</sup>                           | 2.20 g/cm <sup>3</sup> | D792-00     |

\* CTE - Coefficient of thermal expansion

<sup>*†*</sup> *MD* – Properties measured parallel to the direction of molding;

<sup>*t*</sup> CD – Properties measured perpendicular to the direction of molding





### TruTech<sup>™</sup> P1210

TruTech P1210 is a blend of PTFE and bronze powder. Parts are machined from compression-molded tubes or rings which have been heat stabilized.

| Property         | Value                    |                         | ASTM Method |
|------------------|--------------------------|-------------------------|-------------|
| Tensile Strength | 1,700 psi                | 11.7 MPa                | D638        |
| Elongation       | 40%                      |                         | D638        |
| CTE* – Radial    | 4.3×10⁻⁵/°F              | 7.7×10⁻⁵/°C             | D696        |
| CTE – Axial      | 5.7×10⁻⁵/°F              | 10.3×10⁻⁵/°C            | D696        |
| Density          | 0.144 lb/in <sup>3</sup> | 3.986 g/cm <sup>3</sup> | D792        |

\* CTE – Coefficient of thermal expansion



www.cookcompression.com info-cook@doverprecision.com



### TruTech<sup>™</sup> P1220

TruTech P1220 is a blend of PTFE and bronze powder.

| Property                                                        | Value                                              |                        | ASTM Method |
|-----------------------------------------------------------------|----------------------------------------------------|------------------------|-------------|
| Tensile Strength                                                | 4,200 psi                                          | 29.0 MPa               | D4745       |
| Elongation                                                      | 2                                                  | 290%                   | D4745       |
| Hardness                                                        | 65/62 Shore D                                      |                        | D2240       |
| CTE*, stress-relieved<br>material, 78 to 500°F<br>(25 to 260°C) | MD <sup>†</sup> 4.1730%<br>CD <sup>‡</sup> 3.4636% |                        | E831-03     |
| Density                                                         | 0.110 lb/in <sup>3</sup>                           | 3.05 g/cm <sup>3</sup> | D792-00     |

\* CTE – Coefficient of thermal expansion

<sup>†</sup> MD – Properties measured parallel to the direction of molding;

<sup>*t*</sup> CD – Properties measured perpendicular to the direction of molding



#### TruTech<sup>™</sup> P2210

TruTech P2210 is a blend of proprietary fillers in a PTFE matrix, created for rod packing rings, piston rings and rider rings used in non-lubricated and/or high-temperature applications. It is uniquely suited for the demands of injection-stretch blow molding processes used to produce PET (polyethylene terephthalate). It also provides outstanding performance in a variety of other applications, both lubricated and non-lubricated.

TruTech P2210 was developed for non-lubricated applications up to 1,000 psi (70 bar) and lubricated applications up to 2,500 psi (175 bar). It has demonstrated exceptional wear behavior with air, methane, propane, LNG and bone dry gases.

| Property         | Value              |                          | ASTM Method |
|------------------|--------------------|--------------------------|-------------|
| Tensile Strength | 1,800 psi 12.4 MPa |                          | D638        |
| Elongation       | 130%               |                          | D638        |
| CTE*             | 68×10⁻ੰ/°F         | 122×10 <sup>-6</sup> /°C | E831        |
| Hardness         | 65 Shore D         |                          | D2240       |
| Specific Gravity | 3                  | 3.9                      | D792        |





### TruTech<sup>™</sup> P2220

TruTech P2220 is a compression-molded PTFE alloy designed primarily for nonlubricated air compression. Suitable for piston and rider rings, rod rings, and bushings.

| Property             | Value                    |                       | ASTM Method |
|----------------------|--------------------------|-----------------------|-------------|
| Tensile Strength     | 2,000 psi                | 13.8 MPa              | D638        |
| Flexural Strength    | 1,600 psi                | 11.0 MPa              | D790        |
| Elongation           | 409                      | %                     | D638        |
| CTE* – Radial        | 4.3×10⁻⁵/°F              | 7.7×10⁻⁵/°C           | D696        |
| CTE – Axial          | 5.7×10⁻⁵/°F              | 10.3×10⁻⁵/°C          | D696        |
| Thermal Conductivity | .30 BTU/hr-ft-°F         | .005 W/cm-°C          |             |
| Density              | 0.139 lb/in <sup>3</sup> | 3.8 g/cm <sup>3</sup> | D792        |
| Hardness             | 65 Shore D               |                       | D2240       |

**DOVER** PRECISION COMPONENTS



### TruTech<sup>™</sup> P2410

TruTech P2410 is a blend of PTFE and polyimide.

| Property                                                        | Value                                            |                        | ASTM Method |
|-----------------------------------------------------------------|--------------------------------------------------|------------------------|-------------|
| Tensile Strength                                                | 3,500 psi                                        | 24.1 MPa               | D4745       |
| Elongation                                                      | 29                                               | 0%                     | D4745       |
| Hardness                                                        | 60/56 Shore D                                    |                        | D2240       |
| CTE*, stress-relieved<br>material, 78 to 500°F<br>(25 to 260°C) | MD <sup>†</sup> 4.222%<br>CD <sup>‡</sup> 3.800% |                        | E831-03     |
| Density                                                         | 0.070 lb/in <sup>3</sup>                         | 1.95 g/cm <sup>3</sup> | D792-00     |

\* CTE – Coefficient of thermal expansion

<sup>†</sup> MD – Properties measured parallel to the direction of molding;

<sup>*t*</sup> CD – Properties measured perpendicular to the direction of molding





### TruTech<sup>™</sup> P2420

TruTech P2420 is a filled PTFE alloy suitable for lubricated, non-lubricated and mini-lube applications. Suitable for use in piston and rider rings, rod rings, and bushings.

| Property         | Value ASTM M             |             | ASTM Method |
|------------------|--------------------------|-------------|-------------|
| Tensile Strength | 1,600 psi                | 11.0 MPa    | D638        |
| Elongation       | 175%                     |             | D638        |
| CTE*             | 5.4×10⁻⁵/°F              | 9.7×10⁻⁵/°C | D696        |
| Density          | 0.070 lb/in <sup>3</sup> | 1.9 g/cm    | D792        |





### TruTech<sup>™</sup> P2430

TruTech P2430 is a polyimide and graphite filled PTFE alloy.

| Property         | Value                    |                        | ASTM Method |
|------------------|--------------------------|------------------------|-------------|
| Tensile Strength | 2,770 psi                | 19.1 MPa               | D4745       |
| Elongation       | 260%                     |                        | D4745       |
| Hardness         | 64 Shore D               |                        | D2240       |
| Density          | 0.067 lb/in <sup>3</sup> | 1.85 g/cm <sup>3</sup> | D792-00     |



#### TruTech<sup>™</sup> P2510

TruTech P2510 is a proprietary polymer alloy developed for use in non-lubricated, dry gas applications, including bone-dry gases. The unique self-lubricating properties of this material also provide excellent wear resistance in very wet gas environments. Suitable for use in piston and rider rings, rod rings, and bushings.

| Property         | Value ASTM Meth |          | ASTM Method |
|------------------|-----------------|----------|-------------|
| Tensile Strength | 3,000 psi       | 20.7 MPa | D638        |
| Elongation       | 15%             |          | D638        |
| Specific Gravity | 2.0             |          | D792        |
| Hardness         | 62-65 Sł        | ore D    | D2240       |



#### TruTech<sup>™</sup> P3200

TruTech P3200 is a proprietary polymer alloy developed for use in non-lubricated, dry nitrogen compressors. The unique self-lubricating properties of this material provide exceptional wear resistance in this demanding application. Suitable for use in piston and rider rings, rod rings, and bushings.

| Property         | Value ASTM Method  |             |       |
|------------------|--------------------|-------------|-------|
| Tensile Strength | 1,500 psi 10.3 MPa |             | D638  |
| Elongation       | 5.0                | 5.0%        |       |
| CTE*             | 4.6×10⁻⁵/°F        | 8.3×10⁻⁵/°C | D696  |
| Specific Gravity | 2.0                |             | D792  |
| Hardness         | 65 Sh              | iore D      | D2240 |





#### TruTech<sup>™</sup> P3210

TruTech P3210 is a proprietary polymer alloy developed for use in non-lubricated, dry nitrogen compressors. The unique self-lubricating properties of this material provide exceptional wear resistance in this demanding application. Suitable for use in piston and rider rings, rod rings, and bushings.

| Property         | Value ASTM Method  |             |       |
|------------------|--------------------|-------------|-------|
| Tensile Strength | 1,500 psi 10.3 MPa |             | D638  |
| Elongation       | 5.0                | 5.0%        |       |
| CTE*             | 4.6×10⁻⁵/°F        | 8.3×10⁻⁵/°C | D696  |
| Specific Gravity | 2.0                |             | D792  |
| Hardness         | 65 Sh              | iore D      | D2240 |





### TruTech<sup>™</sup> P3300

TruTech P3300 is a proprietary polymer alloy developed for use in non-lubricated, dry gas applications. Suitable for use in piston and rider rings, rod rings, and bushings.

| Property         | Value ASTM Method  |             |       |
|------------------|--------------------|-------------|-------|
| Tensile Strength | 1,600 psi 11.0 MPa |             | D638  |
| Elongation       | 5%                 |             | D638  |
| CTE*             | 5.0×10⁻⁵/°F        | 9.0×10⁻⁵/°C | D696  |
| Specific Gravity | 1.8                |             | D792  |
| Hardness         | 65 Sh              | nore D      | D2240 |



#### TruTech<sup>™</sup> P3310

TruTech P3310 is an advanced second generation polymer which has been specially developed for non-lubricated operation in dry and bone-dry gases. It has been successfully used in ethylene, natural gas, methane and hydrogen. Suitable for use in cylinder rings and rod packing rings.

This material is not suitable for lubricated applications.

| Property                         | Value                   |                          |  |
|----------------------------------|-------------------------|--------------------------|--|
| Tensile Strength                 | 1,700 psi               | 11.72 MPa                |  |
| Maximum Operating<br>Temperature | 300°F                   | 150°C                    |  |
| Elongation                       | 59                      | %                        |  |
| CTE* – Radial                    | 26×10⁻ <sup>6</sup> /°F | 46×10 <sup>-6</sup> /°C  |  |
| CTE – Axial                      | 73×10⁻ <sup>6</sup> /°F | 132×10 <sup>-6</sup> /°C |  |
| CTE – Tangential                 | 20×10 <sup>-6</sup> /°F | 36×10 <sup>-6</sup> /°C  |  |
| CTE – Volumetric                 | 73×10⁻ <sup>6</sup> /°F | 132×10 <sup>-6</sup> /°C |  |
| Specific Gravity                 | 1.                      | 8                        |  |
| Hardness                         | 6                       | 7                        |  |

**DOVER** PRECISION COMPONENTS

#### TruTech<sup>™</sup> P3320

TruTech P3320 is a proprietary polymer alloy developed for use in non-lubricated, dry gas applications, including bone-dry gases. The unique self-lubricating properties of this material also provide excellent wear resistance in very wet gas environments. Suitable for use in piston and rider rings, rod rings, and bushings.

| Property         | Value ASTM Method  |                          |       |
|------------------|--------------------|--------------------------|-------|
| Tensile Strength | 1,600 psi 11.0 MPa |                          | D638  |
| Elongation       | 5.0                | 5.0%                     |       |
| CTE*             | 5.0×10⁻⁵/°F        | 9.0×10 <sup>-5</sup> /°C | D696  |
| Specific Gravity | 1.8                |                          | D792  |
| Hardness         | 65 Sh              | ore D                    | D2240 |



#### TruTech<sup>™</sup> P3330

TruTech P3330 is a proprietary polymer alloy developed to extend sealing component life in non-lubricated gas compressors. It is formulated to be especially effective in bone-dry (extreme low dew point) applications, but can also offer excellent results in wet service. It has been successfully used in hydrocarbon mixtures, natural gas, ammonia and ethylene.

Suitable for use in packing rings, piston rings, rider rings and bushings.

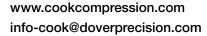
| Property                           | Value ASTM Method |                         |       |
|------------------------------------|-------------------|-------------------------|-------|
| Tensile Strength<br>at 68°F (20°C) | 1,600 psi         | 11.0 MPa                | D1708 |
| Elongation<br>at 68°F              | 5%                |                         | D1708 |
| CTE*                               | 45×10⁻⁰/°F        | 81×10 <sup>-6</sup> /°C | E831  |
| Hardness                           | 65-70 Shore D     |                         | D2240 |
| Specific Gravity                   | 1.                | 9                       | D792  |

**DOVER** PRECISION COMPONENTS



### TruTech<sup>™</sup> K1000

TruTech K1000 is a thermoplastic with a base resin of PEEK. It is injection molded and stress relieved for dimensional stability. Parts are typically machined from molded tubes or discs.


TruTech K1000 was developed for conformability, dimensional stabliity and low wear in poorly lubricated service. It is resistant to most chemicals and acids and has a high resistance to hot water.

It is particularly suited to rings where stable edges must be maintained for effective sealing or wiping.

| Property          | Val         | ue          |  |
|-------------------|-------------|-------------|--|
| Tensile Strength  | 13,000 psi  | 89.6 MPa    |  |
| Flexural Strength | 24,700 psi  | 170.3 MPa   |  |
| Elongation        | 35%         |             |  |
| CTE*              | 3.0×10⁻⁵/°F | 5.4×10⁻⁵/°C |  |
| Specific Gravity  | 1.32        |             |  |

| Temperature Limits                   | Va    | llue  |
|--------------------------------------|-------|-------|
| For Minimum Wear                     | 300°F | 149°C |
| Deflection Temperature<br>at 265 psi | 265°F | 129°C |
| Melting Point                        | 640°F | 338°C |
| Zero Weight Loss in Air              | 500°F | 260°C |

**DOVER** PRECISION COMPONENTS





### TruTech<sup>™</sup> K1030

TruTech K1030 is a carbon fiber filled PEEK alloy developed for extreme service in lubricated compressors. It provides high strength and abrasion resistance.

| Property          | Value                    |                         | ASTM Method |
|-------------------|--------------------------|-------------------------|-------------|
| Tensile Strength  | 21,960 psi               | 151.4 MPa               | D638        |
| Flexural Strength | 32,610 psi               | 224.8 MPs               | D790        |
| Elongation        | 2.0                      | 2.0%                    |             |
| CTE*              | 1.0×10⁻⁵/°F              | 1.8×10⁻⁵/°C             | D696        |
| Density           | 0.052 lb/in <sup>3</sup> | 1.439 g/cm <sup>3</sup> | D792        |

\* CTE – Coefficient of thermal expansion



www.cookcompression.com info-cook@doverprecision.com



### TruTech<sup>™</sup> K1050

TruTech K1050 is a thermoplastic with a base resin of PEEK reinforced with glass fibers. Parts are machined from molded tube or discs. This material is primarily used in valve plates.

| Properties       | Val                      | Value                  |         |  |
|------------------|--------------------------|------------------------|---------|--|
| Tensile Strength | 13,000 psi               | 89.6 MPa               | D638    |  |
| Elongation       | 1.50                     | 1.50%                  |         |  |
| CTE* – Axial     | 2.3×10⁻⁵/°F              | 4.1×10⁻⁵/°C            | E831-03 |  |
| CTE – Radial     | 2.6×10⁻⁵/°F              | 4.7×10⁻⁵/°C            | E831-03 |  |
| Density          | 0.054 lb/in <sup>3</sup> | 1.53 g/cm <sup>3</sup> | D792    |  |





### TruTech<sup>™</sup> K2310

TruTech K2310 is a thermoplastic with a base resin of PEEK reinforced with graphite and PTFE.

| Property                                            | Val                                                              | ue                     | ASTM Method |
|-----------------------------------------------------|------------------------------------------------------------------|------------------------|-------------|
| Tensile Strength                                    | 10,000 psi                                                       | 68.9 MPa               | D638 type 1 |
| Elongation                                          | 1.70                                                             | ) %                    | D638 type 1 |
| Initial Hardness                                    | 84 Sh                                                            | ore D                  | D2240       |
| Flexural Strength<br>at 73°F (23°C)                 | 15,415 psi                                                       | 106.3 MPa              | D790        |
| Flexural Modulus<br>of Elasticity<br>at 73°F (23°C) | 560,255 psi                                                      | 3862.8 MPa             | D790        |
| Compressive<br>Strength                             | 20,242 psi                                                       | 139.6 MPa              | D695        |
| Compressive<br>Modulus                              | 382.4852 psi                                                     | 2.64 MPa               | D695        |
| CTE*, stress-relieved                               |                                                                  |                        |             |
| 25-100°C Below Tg                                   | MD <sup>†</sup> 48.70 μm/(m°C)<br>CD <sup>‡</sup> 48.90 μm/(m°C) |                        | E831-03     |
| 25-150°C Above Tg                                   | MD 80.33 μm/(m°C)<br>CD 82.06 μm/(m°C)                           |                        | E831-03     |
| 25-250°C Above Tg                                   | MD 151.33 μm/(m°C)<br>CD 153.00 μm/(m°C)                         |                        | E831-03     |
| Density                                             | 0.051 lb/in <sup>3</sup>                                         | 1.40 g/cm <sup>3</sup> | D792-00     |

\* CTE - Coefficient of thermal expansion

<sup>†</sup> MD – Properties measured parallel to the direction of molding;

<sup>*t*</sup> CD – Properties measured perpendicular to the direction of molding



### TruTech<sup>™</sup> K2330

TruTech K2330 is a proprietary, injection- or compression-molded PEEK alloy developed for high temperature or poorly lubricated service. It can be run non-lubricated under the right conditions. For use primarily in packing rings and bushings because of size limitations.

| Properties        | Va                       | Value                 |      |
|-------------------|--------------------------|-----------------------|------|
| Tensile Strength  | 6,700 psi                | 46.2 MPa              | D638 |
| Flexural Strength | 16,500 psi               | 114 MPa               | D790 |
| CTE*              | 1.5×10⁻⁵/°F              | 2.7×10⁻⁵/°C           | D696 |
| Density           | 0.054 lb/in <sup>3</sup> | 1.5 g/cm <sup>3</sup> | D792 |



### TruTech<sup>™</sup> K2340

TruTech K2340 is an injection-molded PEEK alloy for general purpose use in lubricated compressors where high strength and wear resistance are required. It is resistant to most chemicals except chlorine. For use primarily in packing rings and bushings because of size limitations.

| Properties        | Value ASTM Metho                               |                          |       |
|-------------------|------------------------------------------------|--------------------------|-------|
| Tensile Strength  | 11,000 psi                                     | 11,000 psi 75.8 MPa      |       |
| Flexural Strength | 19,000 psi                                     | 131 MPa                  | D790  |
| Elongation        | 4.0%                                           |                          | D638  |
| CTE*              | 1.5×10⁻⁵/°F                                    | 2.7×10 <sup>-5</sup> /°C | D696  |
| Density           | 0.047 lb/in <sup>3</sup> 1.3 g/cm <sup>3</sup> |                          | D792  |
| Hardness          | 81.0 Shore D                                   |                          | D2240 |





#### TruTech<sup>™</sup> K3400

TruTech K3400 is a PEEK-based polymer alloy developed for extreme service in both lubricated and oil-free gas compressors. The unique self-lubricating properties of TruTech K3400 allow its successful use in piston, rider and rod rings for high-pressure oil-free compressors, including those handling bone-dry gases.

| Properties       | Value ASTM Method        |                       |       |
|------------------|--------------------------|-----------------------|-------|
| Tensile Strength | 5,000 psi                | D638                  |       |
| Elongation       | 1.0%                     |                       | D638  |
| CTE*             | 2.2×10⁻⁵/°F              | 4.0×10⁻⁵/°C           | D696  |
| Density          | 0.054 lb/in <sup>3</sup> | 1.5 g/cm <sup>3</sup> | D792  |
| Hardness         | 80 Shore D               |                       | D2240 |



### TruTech<sup>™</sup> K3410

TruTech K3410 is a proprietary polymer alloy of PEEK blended with reinforcing and lubricating fillers. It is a high-strength alloy developed for use in non-lubricated, dry gas service where additional wear resistance is required. Operational experience in medium- to high-pressure, non-lube hydrocarbon service suggests low wear rates compared to filled PTFE materials.

| Properties        | Va                       | Value                 |       |
|-------------------|--------------------------|-----------------------|-------|
| Tensile Strength  | 12×10³ psi               | 82.7 MPa              | D638  |
| Flexural Strength | 17×10³ psi               | 117.2 MPa             | D790  |
| Shear Strength    | 7.7×10³ psi              | 53.1 MPa              | D732  |
| Flexural Modulus  | 1.5×10 <sup>6</sup> psi  | 10,342 MPa            | D790  |
| Elongation        | 4.                       | 4.0%                  |       |
| CTE*              | 1.5×10⁻⁵/°F              | 2.7×10⁻⁵/°C           | D696  |
| Density           | 0.047 lb/in <sup>3</sup> | 1.3 g/cm <sup>3</sup> | D792  |
| Hardness          | 65 Shore D               |                       | D2240 |

**DOVER** PRECISION COMPONENTS



#### TruTech<sup>™</sup> K3420

TruTech K3420 is a hot-compression-molded PEEK alloy for general purpose use in lubricated compressors where high strength and wear resistance are required. It is resistant to most chemicals except chlorine. Suitable for use in piston rings, rider rings, packing rings and bushings.

| Properties        | Value ASTM Meth                                |             |       |
|-------------------|------------------------------------------------|-------------|-------|
| Tensile Strength  | 8,700 psi 60.0 MPa                             |             | D638  |
| Flexural Strength | 16,000 psi                                     | 110 MPa     | D790  |
| Elongation        | 4.0%                                           |             | D638  |
| CTE*              | 1.5×10⁻⁵/°F                                    | 2.7×10⁻⁵/°C | D696  |
| Density           | 0.049 lb/in <sup>3</sup> 1.4 g/cm <sup>3</sup> |             | D792  |
| Hardness          | 82.0 Shore D                                   |             | D2240 |





### TruTech<sup>™</sup> K3430

TruTech K3430 is a hot-compression-molded PEEK alloy for extreme service in lubricated compressors. It provides high strength and abrasion resistance.

TruTech K3430 was developed for abrasion resistance and low wear in poorly lubricated service. It is resistant to most chemicals and acids and has high resistance to hot water. It is a preferred material grade for rod rings in high-pressure, hightemperature lubricated service.

| Properties        | Value ASTM Meth         |                       |      |
|-------------------|-------------------------|-----------------------|------|
| Tensile Strength  | 26,000 psi              | 179 MPa               | D638 |
| Flexural Strength | 24,700 psi              | 170 MPa               | D790 |
| Elongation        | 2.0                     | 2.0%                  |      |
| CTE*              | 1.6×10⁻⁵/°F             | 2.9×10⁻⁵/°C           | D696 |
| Density           | 0.05 lb/in <sup>3</sup> | 1.4 g/cm <sup>3</sup> | D792 |

**DOVER** PRECISION COMPONENTS



### TruTech<sup>™</sup> K3510

TruTech K3510 is a filled PEEK alloy developed for higher temperature or poorly lubricated service. Suitable for use in piston and rider rings, rod rings, and bushings.

| Properties        | Value                    |                       | ASTM Method |
|-------------------|--------------------------|-----------------------|-------------|
| Tensile Strength  | 8,000 psi                | 55.2 MPa              | D638        |
| Flexural Strength | 12,000 psi               | 82.7 MPa              | D790        |
| CTE*              | 1.7×10⁻⁵/°F              | 3.1×10⁻⁵/°C           | D696        |
| Density           | 0.054 lb/in <sup>3</sup> | 1.5 g/cm <sup>3</sup> | D792        |

\* CTE – Coefficient of thermal expansion



www.cookcompression.com info-cook@doverprecision.com



### TruTech<sup>™</sup> K3520

TruTech K3520 is a PEEK-based compression-molded alloy developed for extreme service in both lubricated and oil-free air compressors.

| Properties       | Value ASTM Method  |             |       |
|------------------|--------------------|-------------|-------|
| Tensile Strength | 8,500 psi 58.6 MPa |             | D638  |
| Elongation       | 2.8                | 2.8%        |       |
| CTE*             | 3.4×10⁻⁵/°F        | 6.1×10⁻⁵/°C | D696  |
| Specific Gravity | 2.2                |             | D792  |
| Hardness         | 87 Shore D         |             | D2240 |





### TruTech<sup>™</sup> V3710

TruTech V3710 is a filled polyimide developed for extreme service applications. Parts are hot compression molded, then machined to size. It is resistant to most chemicals except steam and ammonia. Suitable for use in piston and rider rings, rod rings, and bushings.

| Properties           | Value                    |                       | ASTM Method |
|----------------------|--------------------------|-----------------------|-------------|
| Tensile Strength     | 9,500 psi                | 65.5 MPa              | D638        |
| Flexural Strength    | 16,500 psi               | 114 MPa               | D790        |
| Shear Strength       | 11,200 psi               | 77.2 MPa              | D732        |
| CTE*                 | 2.7×10⁻⁵/°F              | 4.9×10⁻⁵/°C           | D696        |
| Density              | 0.054 lb/in <sup>3</sup> | 1.5 g/cm <sup>3</sup> | D792        |
| Thermal Conductivity | .50 BTU/hr-ft-°F         | .009 W/cm-°C          | D5930       |

**DOVER** PRECISION COMPONENTS





TruTech V3720 is a hot-compression-molded, bearing-grade polyamide-imide filled with PTFE and graphite. It is resistant to most chemicals except steam and ammonia. Suitable for use in packing, piston and rider rings.

| Properties        | Valu         | ASTM Method |      |
|-------------------|--------------|-------------|------|
| Tensile Strength  | 10.2×10³ psi | 70.3 MPa    | D638 |
| Flexural Strength | 13.1×10³ psi | 90.3 MPa    | D790 |
| Elongation        | 2.8%         | D638        |      |
| Specific Gravity  | 1.46         |             | D792 |





### TruTech<sup>™</sup> V3810

TruTech V3810 is an injection-molded, bearing-grade polyamide-imide filled with PTFE and graphite. It is resistant to most chemicals except steam and ammonia. Suitable for use in rod rings and bushings.

| Properties              | Va                       | ASTM Method            |      |
|-------------------------|--------------------------|------------------------|------|
| Tensile Strength        | 22,000 psi               | 151.7 MPa              | D638 |
| Flexural Strength       | 30,200 psi               | 208.2 MPa              | D790 |
| Compressive<br>Strength | 17,800 psi               | 122.7 MPa              | D695 |
| Elongation              | 79                       | 7%                     |      |
| CTE*                    | 1.4×10⁻⁵/°F              | 2.52×10⁻⁵/°C           | D696 |
| Density                 | 0.052 lb/in <sup>3</sup> | 1.44 g/cm <sup>3</sup> | D792 |



### TruTech<sup>™</sup> V3820

TruTech V3820 is a compression-molded, bearing-grade polyamide-imide filled with PTFE and graphite. It is resistant to most chemicals except steam and ammonia. Suitable for use in packing, piston and rider rings.

| Properties        | Value                    |                        | ASTM Method |
|-------------------|--------------------------|------------------------|-------------|
| Tensile Strength  | 10.5×10³ psi             | 72.4 MPa               | D638        |
| Flexural Strength | 16.5×10³ psi             | 113.8 MPa              | D790        |
| Elongation        | 3%                       |                        | D638        |
| Density           | 0.052 lb/in <sup>3</sup> | 1.44 g/cm <sup>3</sup> | D792        |





# **WHO WE ARE**

Cook Compression is part of Dover Precision Components, an integrated provider of performance-critical solutions for rotating and reciprocating machinery across the oil & gas, power generation, marine, industrial, chemical and general processing markets.



Comprising the Waukesha Bearings<sup>®</sup>, Bearings Plus<sup>®</sup>, Inpro/Seal<sup>®</sup> and Cook Compression<sup>®</sup> brands, the Dover Precision Components portfolio includes hydrodynamic bearings, active magnetic bearings, system and bearing protection, and reciprocating compressor components. Each solution is custom-engineered to provide optimum efficiency, reliability and productivity, and backed by comprehensive aftermarket services.

Dover Precision Components serves its global customer base through facilities in North America, Europe, Asia and the Middle East, as well as technical sales representatives around the world.

#### **READY TO GET STARTED?**

Visit www.cookcompression.com to find your local Cook Compression representative or submit an inquiry.



www.cookcompression.com | info-cook@doverprecision.com